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Abstract: A supercritical (SC) once-through boiler unit is a typical multivariable system with large inertia and non-

linear, slow time-variant, and time-delay characteristics, which often makes the coordinated control quality 

deteriorate under wide-range loading conditions, and thus influences the unit load response speed and leads to heavy 

fluctuation of the main steam pressure. To improve the SC unit’s coordinated control quality with advanced 

intelligent control strategy, the neural-network based inverse system models of a 600MW supercritical boiler unit 

were investigated. A feedforward neural network with time-delayed inputs and time-delayed output feedbacks was 

adopted to establish the inverse models for the load and the main steam pressure characteristics. Based on the model, 

neural network inverse coordinated control scheme was designed and tested in a full-scope power plant simulator of 

the given SC power unit, which showed that the proposed coordinated control scheme can achieve better  control 

results compared to the original PID coordinated control. 
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1. INTRODUCTION

 

Supercritical (SC) and ultra-supercritical (USC) power 

generating units have become the dominant coal-fired power 

units in China and around the world (Garduno and Lee，

2005；Ma and Lee， 2011). To meet the Automatic 

Generation Control (AGC) requirement, these large-capacity 

SC/USC power units are frequently required to participate in 

peaking-load regulation and often work in large-scale load-

following mode (Li and Wang, 2005).  

Since a SC/USC boiler unit is a strongly coupled nonlinear 

multivariable system with large time-delay characteristics, 

the traditional coordinated control strategy cannot well adapt 

to the load regulation, and often leads to slow load response 

and large main steam pressure (MSP) fluctuations. 

Therefore, considering the stability of the power grid and the 

safety and economy of the power unit, it is of great 

importance to improve the coordinated control quality of the 

SC/USC power unit with advanced model-based intelligent 

control strategies, such as neural network inverse control or 

predictive optimal control method (Heo and Lee，2008；

Lee et al.，2007b, 2009, 2010；Ma and Lee，2011). 

With increasing number of SC/USC boiler units, many 

studies have been performed for modeling (Ding et al., 2005; 

Yan et al., 2012 ). Among them, parameter tuning for some 

models is complicated and the models are inaccurate. Some 

models are too complex to fit for intelligent coordinated 

controller design. Therefore, how to establish a nonlinear 

mathematical model with higher accuracy and simpler 

structure, which is suitable for intelligent controller design 
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and applicable for a SC/USC boiler unit, remains an 

important open problem. 

Self-adaptive inverse control method has drawn much 

attention in engineering applications with its advantages of 

clear physical concept, being intuitive and easy to 

understand (Dai, 2005). But solving for the inverse system 

model of a complex multivariable system is a bottleneck. At 

the same time, artificial neural networks (ANNs) have been 

widely used for modeling and control of complex industrial 

dynamic systems with impressive identification ability, 

strong fault tolerance and adaptive learning capability 

(Gencay and Liu，1997；Lee et al.，2007a). Combining 

them together, ANN-model based inverse control method 

can overcome the difficulty of solving the inverse problem, 

and present promising future applications. Recently, neural 

network inverse control has been applied in different areas, 

including power plant steam temperature control and 

optimization (Wang et al.，  2002；Lee et al.，  2009, 

2010；Ma and Lee，2011). 

Aimed at improving the coordinated control quality of a 

supercritical boiler generating unit, the neural network 

inverse system models for a 600MW SC boiler unit are 

studied. Two separate inverse models for load and MSP  are 

constructed. The inputs and outputs of each model are 

determined by analyzing the correlation between input and 

output variables, and the coordinated control modes of the 

SC power generating unit. The models are built with  time-

delayed feedforward neural networks, trained and verified 

with abundant operating data. Based on the developed 

models，neural network inverse controllers are designed for 

the coordinated system of the 600MW SC power unit, which 

are validated by real-time control simulation tests. 
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2. COORDINATED CONTROL MODES AND 

SIMPLIFIED MODEL OF A SC BOILER UNIT 

2.1 Coordinated Control Modes 

Usually, the coordinated control system of a SC/USC boiler 

unit includes boiler master control (BMC), turbine master 

control (TMC), target load and load ramping-rate setting, 

target MSP  and pressure rate setting, primary frequency 

tuning and other function loops (Zhang et al., 2007). For the 

600MW supercritical boiler unit investigated in this work, 

based on whether BMC and TMC are put into automatic or 

not, there are four kinds of control modes: (1) manual mode 

(both BMC and TMC are in manual), (2) boiler-following 

mode(TMC is in manual while BMC is in automatic), (3) 

turbine-following mode (BMC is in manual while TMC is in 

automatic), and (4) coordinated control mode (both BMC 

and TMC are in automatic modes). 

According to the inner logic difference, the coordinated 

control mode can be divided into Boiler-Following Based 

Coordinated (BFBC) mode and Turbine-Following Based 

Coordinated (TFBC) mode. Under BFBC mode, TMC is 

used to control the load by changing the valve opening of 

the turbine governor when load demand changes, and BMC 

is responsible for maintaining the MSP by changing the fuel 

flow. It results in faster load response and smaller load 

deviation, but relatively larger main steam pressure 

fluctuations. Under TFBC mode, BMC is responsible for 

controlling the load when load demand changes, and TMC is 

used to maintain the MSP by changing the turbine valves’ 

opening. It results in smaller steam pressure deviation, but 

slower load response.  

When a coal-fired power generating unit is scheduled 

automatically through Automatic Generation Control (AGC) 

by the regional grid load dispatch center, the power plant 

often puts the priority in meeting the power grid load 

demand to avoid additional penalty. Thus the BFBC mode, 

with its fast load response, is the preferred coordinated 

control mode under AGC control, and it is adopted by most 

SC/USC power units. For the 600MW SC power unit 

investigated in this paper, BFBC mode is also employed. 

2.2 Simplified Model Structure of SC Boiler Unit 

During the period of increasing load in a SC/USC boiler 

unit, the steam in the steam-water separator will convert 

from wet state to dry state and finally entering "once-

through" stage. When a SC/USC boiler unit works in the 

"once-through" stage, there is no clear demarcation point 

between steam and water. Feedwater entering the 

economizer is continuously heated, evaporated and 

overheated, and the length of each stage changes with 

disturbances of fuel flow, feedwater flow and turbine 

governor valve opening, leading to changes in superheated 

steam temperature, MSP and unit power.  

Therefore, a SC/USC boiler unit is normally described as a 

strongly coupled nonlinear model with 3 inputs and 3 

outputs, as shown in Fig. 1. 
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Fig. 1. Simplified model of a SC boiler unit. 

3.STRUCTURE  FOR  LOAD AND MAIN STEAM 

PRESSURE INVERSE MODELS 

3.1 Principle of Neural Network Inverse Model 

Among different nonlinear system control methods, the 

inverse system method is intuitive and easy to understand, 

which has been applied to different industrial processes. 

Based on neural network inverse system theory, if the 

inverse model 1
( )u f y


 of a typical SISO (single-input 

single-output) nonlinear system  y f u can be 

approximated by a neural network model and this NN 

inverse model is cascaded with the original system, as 

shown in Fig. 2, then a quasi-linearization system 

 y g y


 can be constructed and solved with linear system 

methods . 

Neural Network

Inverse System
Original System

u yy*

 

Fig. 2. Neural network inverse system principle. 

After the neural network inverse system model of high 

precision has been established, a neural network inverse 

controller can be designed to realize inverse control of the 

original system. 

3.2 Load and MSP Inverse Model Structure  

As shown in Fig. 1, a SC boiler unit can be simplified as a 3-

input 3-output model. Considering the strong coupling 

among the inputs and outputs and the diversity of the unit’s 

coordinated control modes, if this model structure is selected 

to build the inverse model of the load and main steam 

pressure, the reversibility of the model is difficult to 

guarantee, and it is not suitable for inverse controllers’ 

design. In addition, the unit power is related directly to the 

main steam temperature (MST) before the turbine governor 

valve, not the intermediate point temperature. The MST of a 

supercritical boiler unit not only depends on the feedwater-

coal ratio, but also is greatly affected by the water-spray 

attemperators during dynamic loading process. The model in 

Fig. 1 does not take the water-spray attemperators into 

account, so it may lead to large load prediction error. 
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For the simplified system of a SC power unit shown in Fig. 

3, main steam pressure Ps, main steam temperature Ts and 

turbine governor value opening μ are the three most 

important variables directly related to the turbine load. Main 

steam pressure Ps is affected by boiler fuel flow B, 

feedwater flow W and turbine governor value opening μ. To 

facilitate the design of the inverse coordinated controller, the 

inverse model structure is determined with the following 

considerations: (1) The MSP model and the unit load model 

are built respectively to make each model simpler in 

structure and reversible. (2) Since BFBC mode has faster 

load response under AGC than other coordinated control 

modes, the inverse model development is based on BFBC 

mode. 

Boiler Turbine
 

 

B
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Ps Ts
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Fig. 3. Schematic diagram for supercritical power unit. 

Based on the above consideration, two separate direct 

models for the MSP and the unit load are set up as shown in 

Fig. 4(a). Corresponding to the BFBC mode, turbine 

governor valve opening is responsible for adjusting the unit 

load, and fuel flow is for maintaining the main steam 

pressure. Thus the two inverse models are formed as shown 

in Fig. 4 (b). It can be easily seen that the reversibility of the 

two inverse models are guaranteed, and the models are with 

simple structure and fit for inverse coordinated controller 

design. 
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Fig. 4. Direct/inverse models for load and MSP of a SC unit.  

4. NEURAL NETWORK INVERSE MODEL 

DEVELOPMENT AND VALADITION 

4.1 Structure of Neural Network Inverse Models 

In this work, a standard BP (or feed-forward) neural network 

with time-delayed inputs and output feedbacks is applied to 

establish the inverse dynamic system models for the load 

and the MSP of a 600MW SC boiler unit.  

For the two BP network inverse models, the current and 

delayed values of the 3 inputs are used as the model inputs. 

The delayed value of the fuel flow (or turbine valve 

opening) is also introduced as the model’s input. The current 

value of fuel (or turbine valve opening) is used as the model 

output. Thus the two dynamic inverse models both have 7 

inputs and 1 output, as shown in Fig. 5. The BP model has 

been implemented using Matlab Neural Network Toolbox. 

The hidden-layer and the output-layer activation functions 

adopt Matlab purelin function and tansig function, 

respectively; and the Levenberg-Marquardt (LM) algorithm 

(trainlm) is used for model training. 
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Fig. 5. Structure of the 2 Inverse models. 

4.2 Training of Neural Network Inverse Models  

The neural network models should be trained with sample 

data set after the models’ inputs, outputs and structures are 

determined. To make a NN model fully represent the 

dynamic and static characteristics of the controlled object, 

the training data should be rich enough to contain different 

operating conditions under which the model will be applied.  

In this paper, the training data are obtained from the full-

scope simulator of a 600MW SC boiler unit. During data 

acquisition, the simulator is operating in BFBC mode, and 

the feed-water control, water-spray attemperator controls, air 

flow control, et al., are all put into automatic modes. In our 

work, 11,927 sets of data are collected from the simulator 

with the sampling period of 2s, including different steady-

state data between 600MW and 420MW load levels and the 

dynamic transient data between different load levels with the 

load ramping rate of 12MW/min. Matlab Neural Network 
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Toolbox functions are then used to construct the NN inverse 

models. 

Number of hidden nodes in a neural network has great 

influence on its performance. In this work, the hidden-layer 

nodes of the 2 NN models are determined by trial and error. 

The final model structures and the mean squared errors 

(MSE) of the two models after 1000 training cycles are 

shown in Table 1.  

Table 1. Training results of the 2 models 

Inverse Model Category 
Model 

Structure 
MSE 

Main Steam Pressure 7-21-1 1.3726×10
-7

 

Load 7-28-1 3.3205×10
-7

 

 

The calculating results of the two dynamic BP network 

models are shown in Fig. 6. It is evident that the dynamic BP 

network models with time-delay inputs and output feedback 

are with high fitting precision. 
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Fig. 6. Training results of the 2 NN inverse models. 

4.3 Model Verification for Load-Changing Conditions 

To verify the on-line dynamic prediction performance of the 

trained models, tests are carried out under a wide range of 

loading conditions. During loading-down process from 

600MW to 420MW with the ramping rate of 10MW/min, 

the models’ real-time outputs are compared with those of the 

power plant simulator in Fig. 7. It can be seen that the two 

dynamic inverse models predict the actual outputs with a 

small MSE error. 
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(b) Turbine valve opening 

Fig. 7. On-line test of the NN inverse models. 

5. INVERSE CONTROL SCHEME DESIGN 

5.1 Inverse Compensation Control Scheme 

After the 2 inverse models have been trained with sufficient 

accuracy, the NN inverse coordinated controllers can be 

constructed, which can directly replace the original PID 

coordinated controllers to adjust the fuel flow and turbine 

valve opening to keep MSP and follow load demand. For the 

control action to take place, the last input of each inverse 

model, as shown in Fig. 4(b), needs to be replaced with the 

desired reference output of the unit load or the MSP. The 

direct inverse control scheme is shown in Fig. 8. 

 

Fig. 8. Direct inverse coordinated control scheme. 
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For complex power generating units, out of operation safety 

and reliability consideration, it is often not allowed to 

abandon the original control logic. Because of this, the best 

compromising solution is to provide a supplementary signal 

to the original control demand to improve the coordinated 

control effect (Ma and Lee, 2011). In our work, the inverse 

compensation control scheme is adopted by adding 2 

supplementary signals coming from the NN inverse 

controllers to the original coordinated controllers’ outputs, 

as shown in Fig. 9. 

 

Fig. 9. Inverse compensation control schematic. 

5.2  Load and MSP Reference Real-time Updating Method 

A neural network inverse model itself is a kind of 

approximation of the inverse system. The imperfection of 

the model structure and the incomplete training samples will 

both lead to modeling error. When the NN inverse models 

are used as real-time controllers, the actual operating 

condition will also be different from the model training or 

validating conditions, thus producing control error. In 

addition, the load and MSP cannot be changed 

instantaneously when the difference between the setpoint 

and current temperature is big. Therefore, the use of fixed 

load and MSP setpoints in the NN controllers not necessarily 

brings good control effect. As a solution, real-time load Ne(k) 

and MSP signals Pt(k) at kth step are introduced to adjust the 

input reference values of the NN controllers at k+1 step 

automatically. The reference Load and MSP values, Lref (k+1) 

and Pref (k+1), are adjusted by: 

  ））（（-）（）1（
1 sprefref

LkNekkLkL        (1) 

））（（-）（）1（
t2 sprefref

PkPkkPkP           (2) 

where, k1 and k2 are two saturation factors related to load and 

MSP error, respectively.  

6. INVERSE CONTROL SIMULATION TESTS 

Based on the NN inverse control compensation scheme, 

detailed control simulation experiments are made with the 

full-scope simulator of a 600MW SC boiler unit.  

When the unit load is changed in turn from 600 MW, to 540 

MW, to 480 MW, and then back to 540 MW and to 600 MW, 

with the load ramping rate of 12 MW/min and the pressure 

changing-rate of 1 MPa/min, the NN inverse compensation 

control results are compared with the original coordinated  

control results in Fig. 10. 

It can be seen from Fig. 10 that, with the original 

coordinated control scheme,  the maximum load control 

deviation is ±5 MW and the control quality are obviously 

different at different load level. The MSP control overshoot 

is relatively large and the stabilizing time is long. With the 

NN inverse compensation control scheme, load can track the 

instruction completely, and the MSP deviation is less than  

±0.5MPa, and stabilizing time is short. 
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Fig. 10. Control test under training condition. 

For the above experiments, the load changing rate and the 

pressure changing rate are consistent with the model training 

condition. To test the inverse coordinated control effect 

under an operating condition different from the training 

samples, we change the load ramping rate to 6 MW/min, and 

keep the pressure-changing rate at 1 MPa/min. Again, we 

drop load from 600MW to 480MW then back to 600MW. 

The load and MSP control effects are compared in Fig. 11. 

We can see from Fig. 11 that, under the validation condition, 

the NN inverse control also achieves better results than the 

original PID control. The load can completely track the load 

instruction and the MSP deviation is less than ±0.5MPa. The 

overshoot is smaller and the stabilizing time is shorter.  
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(b) Main steam pressure 

Fig. 11. Control test under validation condition. 

7. CONCLUSION 

To improve the coordinated control quality of a supercritical 

power generating unit, the dynamic feedforward neural 

network inverse models for the load and main steam 

pressure (MSP) are developed. Based on the trained models, 

the NN inverse coordinated controllers are designed, 

programmed and tested in the full-scope simulator of a 

600MW SC power unit. Simulation experiments showed that 

the proposed NN inverse coordinated control method has 

better performance in load responsiveness, steam pressure 

overshoot and control accuracy, compared to the original 

scheme. 

It should be pointed out that a supercritical power unit is a 

complicated nonlinear system. There are many factors 

influencing the load and main steam pressure. Selection of 

input variables, neural network structure, and the choice of 

training data, all have influence on the final control effect. In 

addition, real-time tuning of the NN inverse models still 

needs further research.  
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